

钳形功率计

KEW 2060BT

KYORITSU ELECTRICAL INSTRUMENTS WORKS, LTD.

包装	内容的	り确认	3
安全	事项.		3
1章		产品概略	7
2 章		各部分的名称与说明	8
3章		基本操作	9
	3.1	功能键	9
	3.2	操作键	9
	3.3	LCD 上显示的记号	12
	3.4	测试值的单位	11
4 章		测试前的准备工作	12
	4.1	接通电源	12
	4.2	电池的确认	13
		画面显示 / 电池剩余量	14
		干电池的安装方法	14
	4.3	测试线的连接(主机)	15
	4.4	与测试对象的连接	14
5 章		设定	16
		项目的选择(移动)	16
		接线方式	17
		VT比/CT比	18
		使用VT/CT的测试	19
		蜂鸣 ON / OFF	19
		背光灯 ON / OFF	19
		标称电压的频率	19
		系统复位	20
6章		每个测试功能的显示项目	21
	6.1	有效值•频率测试	21
		电流有效值、频率	21
		电压有效值、频率	22
	6.2	单相•三相(平衡)电力测试	23
		单相 2 线式(1 P 2 W) 接线图	23
		单相3线式(1P3W)接线图	23
		三相3线式(3P3W)平衡 接线图	24
		三相4线式(3P4W)平衡 接线图	24
		显示的切换	25
	6.3	三相(不平衡)电力测试	26
	-	三相 3 线式(3 P 3 W)不平衡	26
		三相 4 线式 (3 P 4 W) 不平衡	29
			-

	6.4	谐波测试	32
		电流谐波失真率、含有率、有效值	32
		电压谐波失真率、含有率、有效值	33
		谐波失真率 THD-R/THD-F	35
	6.5	相位检测	36
7章		其他功能	37
		「数据保持功能」	37
		「自动熄灯」	37
		「自动关机」	37
		「电流自动量程」	37
8章		使用 Bluetooth 蓝牙功能	
	8.1	专用程序「KEW Power * (星号)」的功能	
9章		规格	40
	9.1	安全规格	40
	9.2	一般规格	40
	9.3	测试规格	41
		交流电流功能 🏹	41
		交流电压功能 🏹	42
		电力功能W	43
		谐波电流功能	46
		相位检测功能 🌄	48

包装内容的确认

感谢您购买本公司的钳形功率计 **KEW2060BT**。 首先,请先确认您所收到的本产品的包装内容。

包装内容

1	主机	KEW 2060BT : 1 台
2	测试线	MODEL7290:1组
2		红、黑、黄、各1根(附带鳄鱼夹)
3	电池	单3型碱性干电池(LR6):2节
4	使用说明书	:1本
5	软包	MODEL9198:1个

● 若发现有产品错误、缺货、破损、印刷不良等情况,请联系买方(销售店)

● 本说明书附有保证书,请好好保管。

安全事项

本仪器根据 IEC 61010 标准进行设计、生产,测试符合电子测量仪器的安全要求,并且在其处于最好 状态下检查合格后出货。

本说明书包含警告和安全规则,记载了避免人身危险和保持仪器能在长期良好状态下使用的注意事项。因此,使用仪器前请阅读操作指南。

关于使用说明书

- 使用前,请仔细阅读并完全理解说明书的内容。
- 请随身保存说明书以便随时参考。
- 请遵守产品原来的使用方法以及使用说明书的指示。
- 对于本说明书的安全指示,请在理解的基础上严格遵守。

请务必严格遵守以上指示,如违反指示进行操作,可能会导致事故及人身伤害的发生。因不遵守危险, 警告以及注意中所写的内容而造成的事故及损伤,本公司概不负责。

本仪器上的标志, 意思是指为了安全而阅读本说明书的必要性。并且, 此 🖍 标志分为以下 3 种, 请仔细阅读其各自的内容。

▲ 警告

KEW 2060BT

本仪器所使用的安全符号

\wedge	用户必须参考说明书中的相关内容。
	含双重绝缘或加强绝缘。
4	在旁边显示的测试种类相对应的回路-大地间的电压以下时,可夹钳 在通电状态的裸导线上的设计
~	交流 AC
Ŧ	(机能)接地端口
X	本产品按 WEEE 指令(2002/96/EC)要求为基准。 此电气电子产品不能作为一般家庭废弃物处理。

o 测试种类

安全规格 IEC61010 中关于测试仪器使用场所的安全等级规定称之为测试种类。分为 O ~ CAT.IV。此数值越大表示电气环境的过度性冲力越大。按 CAT.III 所设计的测试仪器比按 CAT.II 所设计的测试仪器可抗更高的冲力。

O(None, Other): 没有直接连接主电源的其他回路。

CATII: 通过电源线连接插座的一次电气回路。

CAT III: 直接从配电盘获取电力的机器的一次回路和从配电盘到插座的回路。

CAT IV: 使用引入线的电力设备和一次过电流保护装置(配电盘)的回路。

▲ 危险
● 在指定的操作方法及条件以外的情况下使用时,主机的保护功能无法正常运转,可能会导致本
仪器损坏或触电等重大事故。在使用本仪器前或采取针对指示结果的对策之前,请使用已知电
源确认正常工作。
● 若在触摸被测物及其周边时可能会触电的场所进行测定时,请佩戴绝缘保护用具。
● 本体的对地最大额定电压符合测试种类 CAT IV / AC600V、CATIII/ AC1000V 的标准。请勿在
更高对地电压的回路中使用。
● 请勿在有易燃性气体和爆炸性气体以及蒸汽的环境中使用,这是非常危险的。
● 请勿在本仪器以及使用者的手潮湿,或者沾上湿气等水滴的状态下使用。
测试
● 测试时,请勿超量程输入。
● 测试中请勿打开电池盖。
电流传感器
● 请确认测试电流是否与额定电压相符合,请在对地最大额定电压以下的电路中使用。
● 测试时,请注意指尖等不能超过保护栏。
保护栏:为防止操作中的触电事故,确保最低限度所需的沿面和空间距离而画的刻印。
● 请务必连接断路器的二次回路。1 次回路的电流容量较大,存在危险。
● 打开钳头时,金属部分请勿接触测试线的2条线之间。
测试线的连接
● 请使用附件的测试线。
● 测试线与主机的测试种类不同时请优先选择较低的测试种类。请确认测试电压是否与额定电压
● 请勿接触测试中个需要的物品。
● 请勿任木连接到王机的状态下连接测试线。
● 测试时,请注息指关寺个形超过保护栏。
休尔仁: 內防止保住中的應电争敢,朔休取低限及所而的宿面和至向起离间回的刻印。 ● 测试由(放于通由供去下) 违勿其主机的端口上取下测试纸
 ▼ 欧山下 (又」 些 出 (心 下), 明 /) 八 土 / L ロ) 师 □ 上 収 下 / 例 瓜 (3)。 ●
 → 只用印印亚内印/月内/1万/吨// (以送印) < 示线之间。 ● 语勿碰轴顶部的全届部分
▼ ң⁄лншлшану, приј並/尚 пр// 。

电池

● 测试中请勿更换电池。

\wedge	警告
----------	----

- 使用中若发现主机及测试线龟裂或金属部件裸露在外时,请立刻停止测试。
- 使用本产品前请先确认可通过已知电源进行正常测试。
- 请勿擅自对本仪器进行拆分,改造,更换代替部件等行为。如需修理或调整,请将仪器送至本 公司或代理商处。

⚠ 注意

- 本仪器使用范围限定为住宅,商用及轻工业的环境中。在附近有强电磁干扰装置及大电流造成 的大电磁场的场所中可能无法正确测试。
- 请注意被测导线有时会产生高温。
- 请勿输入超过各量程的测试范围的电流和电压。
- 电源为 OFF 时请勿在电压测试线和钳形传感器上输入电压和电流。
- 请勿在尘埃多,水汽多的环境中测试。
- 请勿在强电磁波场所或带电物体附近测试。
- 请勿让仪器振动或冲击,掉落地面。

测试线

- 请确认测试线的插头完全插入端口。
- 请勿强力拉或拧测试线。可能会导致龟裂或断线。

电池

● 请勿混合使用不同品牌和种类的电池。

使用后

- 使用后必须将功能开关设置为 OFF,并取下测试线。
- 长时间不使用仪器时,请卸下电池后保管。
- 搬运时请勿让仪器受到震动或冲击,掉落地面。
- 请勿将仪器放置在直射阳光、高温潮湿或结露的场所。
- 请使用湿布或者中性洗涤剂清洁仪器,不能使用研磨料或溶剂。
- 仪器潮湿时,必须等其干燥后保管。

请务必遵守各章的 🕂 危险, 🕂 警告, 🕂 注意和注记的内容。

1章 产品概略

本产品是支持多种接线方式的钳形功率计。除了电压、电流有效值、电力测试以外,还具备电能 质量确认用的谐波解析功能和检相功能。同时,使用蓝牙通信功能可将测试数据和波形数据,在 市面上销售的平板终端,智能手机上进行实时确认和记录。

安全设计

设计符合国际安全规格 IEC 61010-1 CAT IV 600V / CAT III 1000V。

接线方式

单相2线(单相3线), 三相3线(2功率计法), 三相4线的各种测试接线。

大口径电流传感器

可安全夹住被测导体直径φ 75mm 以内的配线或宽度 80mm 以内的母线。

测试及运算

测试并运算真电压有效值、电流有效值和各频率、有效/无效/视在功率、功率因数、电压电流相位差。

谐波测试

显示 1 次~30 次的各电压/电流谐波的有效值及含有率、综合谐波失真率(THD-R/-F)。

相位检测

判定动力电源的旋转方向及缺相。

应用程序

通过蓝牙将测量数据或波形数据发送到平板电脑或智能手机。终端记录的文件可以在应用程序 (KEW Power*(星号)中简单参照。

2章 各部分的名称与说明

①电流传感器

②扳手(电流传感器开关用的扳手)

③保护栏

为防止操作中的触电事故,确保最低限度所需的 沿面和空间距离而画的刻印。测试时,请注意指 尖等不能超过保护栏。

④功能开关

测试功能的切换开关。兼作电源开关,在"OFF" 位置时断电。

⑤数据保持开关

用于固定显示屏上的测试值的开关。 保持功能启动时在显示屏上显示 **①**标志 。

⑥模式开关*1,2

主要以 MAX:最大值/MIN:最小值/AVG:平均 值/ | PEAK |:波高值(绝对值)的顺序,边旋 转边切换显示的测试值。

⑦背光灯开关 🌾 (1sec) [◀: 通用]

长按可点亮或熄灭背光灯。

⑦⑧显示项目切换开关[◀▶]*2

短按主要在旋转显示项目的同时切换。

*1在显示 MAX:最大值 / MIN:最小值 / AVG:平均值 / |PEAK|:峰值(绝对值)的状态下,与电流相关的功能的量程是固定的。返回到瞬时值的显示时,切换为自动量程。

**2开关⑥~⑧的操作内容,除了⑦的背光灯的操作以外,每个功能都不同。详情请参阅第9 页"3.2操作开关"及各功能项目的说明。

⑨显示屏

带背光灯的液晶屏(场效应液晶屏)。

⑩交流电压输入端子

插入测试线(MODEL7290)的⑪插头。请按照测试的接线方式连接。

⑪插头

12鳄鱼夹

3章 基本操作

3.1 功能开关

功能		概略			
SETUP 设定		设置接线方式、VT比、CT比、蜂鸣器的ON/OFF、背光灯的ON/OFF、 标称频率50Hz/60Hz。系统复位可将所有设置还原为出厂状态。			
♥ 检相		判断并显示动力电源的旋转方向及缺相。			
▶	谐波	显示从电压、电流的 1 次基波到 30 次谐波的有效值、含有率、失真率 [THD-R/THD-F]。			
w	电能	显示有效/无效/视在功率、功率因数、电压电流相位差、电压/电流有 效值。			
~V	交流电压	显示交流电压的有效值、峰值和频率。			
~A	交流电流	显示交流电流的有效值、峰值和频率。			

3.2 操作开关

功能	开关	操作内容		
_	数据保持开关	按下数据保持开关后,在 LCD 左上方显示 Ⅱ 标志,保留住按 下时的显示。在此状态下,即使输入发生变化,也不会更新测试 值。再次按下数据保持开关或切换功能后, Ⅱ 标志消失,重新 开始显示值的更新。		
	背光灯开关 茶 (1sec) [◀]	长按: 点亮或熄灭背光灯。		
SETUP	显示项目切换 开关 [◀▶]	更改设定项目以及更改设定值。		
	模式开关	选择设定项目以及确定设定值。		
	显示项目切换 开关 [◀▶]	短按: ↔ THD-F ↔ THD-R ↔ 1 次基波~30 次谐波↔ 旋转显示		
	[▶]	长按:交替切换电压、电流有效值的显示。		
谐波	模式开关	短按:如下所示旋转显示。 ↔ 瞬时值 ↔ MAX 最大值 ↔ MIN 最小值 ↔ AVG (平均值) ↔ 长按: 暂时复位 MAX、MIN、AVG 的测量,重新开始测试。		

KEW 2060BT

功能	开关	操作内容		
	显示项目切换 开关 [◀▶]	短按:如下所示旋转显示。 ↔ 有效功率/功率因数↔ 有效功率/电压电流相位差↔ 有效/视在功率↔ 有效/无功功率↔ 电流/电压有效值↔		
电能 1P2W 1P3W	模式开关	 短按:如下所示旋转显示。 ↔ 瞬时值↔ MAX 最大值↔ MIN 最小值↔ AVG (平均值)↔ 长按: 暂时复位 MAX、MIN、AVG 的测量,重新开始测试。 		
由能	显示项目切换 开关 [◀▶]	短按:如下所示旋转显示。 ↔ 有效功率/功率因数↔ 有效/视在功率↔ 有效/无功功率↔ 电流/电压有效值↔		
3P3W 3P4W 平衡	模式开关	 短按:如下所示旋转显示。 ↔ 瞬时值 ↔ MAX 最大值 ↔ MIN 最小值 ↔ AVG (平均值) ↔ 长按: 暂时复位 MAX、MIN、AVG 的测量,重新开始测试。 		
	显示项目切换 开关 [▶]	测试中的短按: 将测试对象从 R(L1)相移至 T(L3)相。		
电能 3P3W 不平衡	[◀▶]	结果显示中的短按:如下所示旋转显示。 ↔ 三相有效功率↔ R(L1)相有效功率↔ T(L2)相有效功率 ↔		
	模式开关	测试中的短按: 交替切换有效功率和电压、电流有效值的显示。 结果显示中的长按: 重置显示值并开始重新测试。		
电能 3P4W	显示项目切换 开关 [▶]	测试中的短按: 将测试对象移至 R(L1)相→S(L2)相→T(L3)相。 结果显示中的短按:如下所示旋转显示。 ↔ 有效功率/功率因数↔ 有效/视在功率↔ 有效/无功功率↔		
不平衡	模式开关	测试中的短按: 交替切换有效功率和电压、电流有效值的显示。 结果显示中的长按: 重置显示值并开始重新测试。		

		短按:如下所示旋转显示。
		↔ 瞬时值↔ MAX 最大值↔ MIN 最小值
		↔ AVG(平均值)↔ PEAK (峰值※)↔
		长按:
		暂时复位 MAX、MIN、AVG、 PEAK 的测试,重新开始测试。
∼V ∼A	模式开关	* PEAK 以绝对值显示瞬间的波高 值。

3.3 LCD 上显示的符号

符号标志	显示时的状态				
•	电池的剩余量。有4种变化。				
8	可使用蓝牙 Bluetooth。				
保留住画面的显示更新。					
UNB 测试方法的设定不平衡。平衡时不显示。					
3P3W 3P4W 接线设定。单相不显示。					
户 : [] 之 总功率。仅显示 "P1" 或 "P2" 任一时,根据显示指示单相功率。					
▲★ 关闭蜂鸣器。					
THD R THD F	综合谐波失真率的种类。				
ከ- ¦	谐波次数。显示基波 1 次(h-1)到谐波 30 次(h-30)。				
VT	设定 1/1 以外的 VT 比。				
СТ	设定 1/1 以外的 CT 比。				
	在显示的测试值的种类上做记号。				
—	各测量值的极性。显示负或无符号(正)。极性符号表示的状态,请参照"9.3 测试规格"。				

3.4 测试值的单位

単位					
v	电压有效值	Α	电流有效值	Hz	频率
k W	有效功率	k Var	无效功率	kVA	视在功率
PF	功率因数	deg	电压电流相位差	%	谐波含有率

⚠ 注意

- 请勿混合使用不同品牌和种类的电池。
- 请勿将新电池与旧电池混合使用。
 - 请按照电池盒内的标识安装电池,以避免弄错电池的极性。

画面的显示 / 电池的剩余量

	显示	内容
н	•••••	电池是最佳状态。
电池	•	图标会根据电池的剩余量而变化。
?????????????????????????????????????		电池剩余量变少了。建议尽早更换电池。
重		电池消耗到不能正常测试的状态。请立即停止使用并更换 电池。 在这种状态下仍继续测试,蓝牙通信将停止。

干电池的安装方法

按以下顺序安装干电池。

- 1 从主机上取下测试线,将功能开关设置为 **OFF**。
- 2 松开主体背面下部的电池盖上的1个螺钉,拆下电池盖。
 - 取出全部旧电池。
- 4 按正确的极性安装 2 节新的单 3 形碱性干电池: LR6。
- 5 安装电池盖,拧紧1个螺钉。

3

4.3 测试线的连接(主机)

- 请勿连接测试不需要的测试线。
- 电流传感器请连接断路器的二次回路。1次回路的电流容量较大,存在危险。

5 设定

开始测试前,必须事先设定接线方式和被测电压的频率、必要时的 VT 比、CT 比。

请根据 SETUP 设定功能开关。

注记

● 请注意: 在"确认"设定之前,如果切换"功能开关",则不会体现设定中的值。

项目的选择(移动)

位于主体正面下侧左右的"显示项目切换开关 [◆]"键可移动 设定项目,中间的"模式开关"键进行选择。

每个设定项目的变更可使用"显示项目切换开关 [◆]"键变更数值。变更完成后再次按下"模式开关"键,确定设定值后返回移动画面。

显示切换开关[**◀▶**] : 设定项目的移动 ■ 「模式开关」 : 选择

出厂时的设定如下。 进行系统复位后,将初始化为出厂时的设置。

接线方式

显示「接线」,按下中间的「模式开关」键,可进行接线设定的变更。请根据测试对象的接线,从5种接线方式中选择1种。

**单相3线式(1P3W)测试时,请选择单相2线式(1P2W),分别测试各相(L1/L2)的功率。1P3W的总功率不能显示。

显示切换开关 [◀▶]: 接线的变更

显示要设定的接线,按下中间的"模式开关"键,确认后返回移动画面。

VT比/CT比

⚠ 注意

- 使用 VT、CT 的显示范围为电压/电流有效值 0.000~9999、功率 0.000k~9999k 的范围。请根据 显示范围设定适当的 VT 比、CT 比。如果设置了非常大或非常小的值,则显示将显示为零或 OL, 保持不变。
- 不管 VT 比、CT 比的设定如何, 输入都可以为交流电压输入端子 1100V, 电流传感器 1100A。VT、 CT 的输出超过这个的话显示为 OL。

外部设置 VT (变压器)或 CT (变流器)时进行设定。设定的 VT 比和 CT 比是与电压和电流相关的所有测试值相乘。

显示"VT比"或"CT比",按下中间的 ≥闪烁,请在0001~9999的范围内进行

"模式开关"键,显示变为4位数,可输入的位数会闪烁。请在0.001~9999的范围内进行设定。

使用显示切换开关[◀▶]键的短按,可将数字向上计数 1 或向下计数 1。若长按显示切换开关 [◀▶]键,则将变更位数移动到 1 位上位(左方向)或 1 位下位(右方向)。另外,在闪烁的 数字从左端的位置向上位移动了变更位数的情况下,或在闪烁的数字从右端的位置向下移动 了变更位数的情况下,只移动小数点的位置。更改中,长按中间的"模式开关"键,则取消 输入并将设置返回 1.000。

变更后,短按中间的"模式开关"键,确认变更并返回移动画面。

使用VT/CT的测试

⚠ 危险

- 请勿在测试种类 CAT IV / AC600V、CATIII / AC1000V 以上电压的回路中使用。
- 本产品必须在 VT (变压器)、CT (变流器)的二次回路中使用。
- 通电中请特别注意 CT 的二次回路不能开路。万一处于开路状态,二次回路会产生高电压,非常危险。

⚠ 注意

● 本仪器不保证在使用 VT,CT 测试时的精确度。使用 VT,CT 时,本仪器的精确度请参考 VT,CT 精确度以及相位特性等。

测试线的电压或者电流值超过本仪器的最大测量范围时,如下所示,使用与测试线的电压值、 电流值相符的VT、CT,在二次回路中测试,可显示一次回路的值。

单相2线(1P2W)时

蜂鸣 ON / OFF

开关操作时以及检相结果的蜂鸣音,可选择有、无。干电池警告蜂鸣音和自动断电启动蜂鸣音则 与此设定无关。

显示"蜂鸣",按下中间的"模式开关"键后,ON(on)/OFF(oF)闪烁,可进行变更。

显示切换开关 [◀▶]:

变更后,按下中间的"模式开关"键,确认并返回移动画面。

背光灯 ON / OFF

无操作状态持续时,选择是否自动关闭背光灯。

显示"背光"并按下中间的"模式开关"键后,ON (on) /OFF (oF) 闪烁,可进行变更。

显示切换开关[**◀**▶]: on: 5 分钟后 OFF

oF:不能自动 OFF

变更后,按下中间的"模式开关"键,确认并返回移动画面。

标称电压的频率

设定测试对象的电源频率。

注记

● 谐波是根据设定的频率进行运算的。请务必设定与测试对象的电源频率相同的频率。如果设定的频率与标称电压的频率不同,则无法正确测试。

显示"标称电压的频率"并按下中间的"模式开关"键时,.50[Hz]/.60[Hz]开始闪烁,可进行变更。

显示切换开关[◀▶]: 频率的变更

变更后,按下中间的"模式开关"键,确认并返回移动画面。

显示"系统复位",按下中间的"模式开关"键, n: 取消开始闪烁,可进行选择。

显示切换开关[◀▶]:

显示".y",按下中间的"模式开关"键后,进行系统复位,返回移动画面。 显示".n",按下中间的"模式开关"键后,取消操作,什么都不做就返回移动画面。

显示 MAX、MIN、AVG、|PEAK|的状态的量程是固定的。返回到瞬时值的显示时,切换为自动 量程。

模式开

关

模式开关

Ηz

AVG (平均值)

- B

模式开关

ATT (3)

|PEAK|(峰值)

2440 *

「模式开关」短按: 显示模式的切换

瞬时值、最大值(MAX)、最小值(MIN)、平均值(AVG)、峰值(|PEAK|) ^{**}上述各值从按下时刻开始的测试值进行计算。

「模式开关」长按:测试值的复位(MAX、MIN、AVG、|PEAK|)

6.2 单相、三相(平衡)电力测试

注记

● 不能测试异电容三相4线式(V接线、Δ接线)。请分成单相进行测试。

单相2线式(1P2W)接线图

单相3线式(1P3W)接线图

单相 3 线式(1P3W)测试时,请选择单相 2 线式(1P2W),分别测试"L1"和"L2"的功率。 不能显示 1P3W 的总功率。

三相3线式(3P3W)平衡 接线图

三相4线式 (3P4W) 平衡 接线图

显示的切换

「显示项目切换开关 [◀▶] 」

短按: 显示的测试值的切换

有效功率/功率因数、有效功率/电压电流相位差、有效/视在功率、有效/无效功率、电流/电压有效值

「模式开关」

短按:显示模式的切换

瞬时值、最大值(MAX)、最小值(MIN)、平均值(AVG) **上述各值从按下时刻开始的测试值进行计算。

长按: 测试值复位(MAX、MIN、AVG)

例如)有效功率/功率因数*的显示画面

*上段和下段显示的各测试值,在所有画面上同时切换。

显示 MAX、MIN、AVG 的状态的量程是固定的。返回到瞬时值的显示时,切换为自动量程。

6.3 三相(不平衡)电力测试

注记

●不能测试异电容三相4线式(V接线、Δ接线)。请分成单相进行测试。

R(L1)相的接线

在显示第1次测试指示画面的状态下,如下面的"接线图"所示,进行接线。

接线后,短按"显示项目切换开关[▶]"键,显示 R(L1)相的有效功率,每次短按"模式开关"键,可切换显示 R(L1)相的有效功率和电压、电流有效值。

再次短按"显示项目切换开关[▶]"键,将测试对象从R(L1)相转移到T(L3)相。

T(L3)相的接线

在显示第2次测试指示画面的状态下,如右"接线图"所示, 仅将电流传感器移动到T(L3)相。请勿移动测试线。

\$<u>R(L1)</u> \$<u>S(L2)</u> <u>(L3)</u> <u>(L3)</u> <u>(L3)</u> <u>(L3)</u> <u>(L3)</u> <u>(1)</u> <u>(1)</u>

接线后,短按"显示项目切换开关[▶]",显示 T(L3)相的有 效功率,每次短按"模式开关"键,课切换显示 T(L3)相的 有效功率和电压、电流有效值。

再次短按"显示项目切换开关[▶]"键,进入测试结果的显示 画面。

测试结果的显示

长按"模式开关" 键后,测试值复位,返回第1次的测试指示画面。

三相4线式(3P4W)不平衡

R(L1)相的接线

在显示第1次测试指示画面的状态下,如右"接线图" 所示,进行接线。

接线后,短按"显示项目切换开关[▶]"键,显示 R(L1) 相的有效功率,每次短按"模式开关"键,可切换显 示 R(L1)相的有效功率和电压、电流有效值。

再次短按"显示项目切换开关[▶]"键,将测试对象从R(L1)相转移到S(L2)相。

S(L2)相的接线

在显示第2次测试指示画面的状态下,如右"接线图" 所示,将电流传感器与测试线(红)移动到S(L2) 相。

接线后,短按"显示项目切换开关[▶]"键,显示 S(L2) 相的有效功率,每次短按"模式开关"键,可切换显 示 S(L2)相的有效功率和电压、电流有效值。

再次短按"显示项目切换开关[▶]"键,将测试对象从S(L2)相转移到T(L3)相。

負

荷

<u>T(L3)相的接线</u>

在显示第3次测试指示画面的状态下,如右"接线图" 所示,将电流传感器与测试线(红)移动到T(L3) 相。

R(L1)

S(L2)

T(L3)

電

源

接线后,短按"显示项目切换开关[▶]"键,显示 T(L3) 相的有效功率,每次短按"模式开关"键,可切换显 示 T(L3)相的有效功率和电压、电流有效值。

再次短按"显示项目切换开关[▶]"键,进入测试结果的显示画面。

测试结果的显示

「显示项目切换开关[◀▶] 」

短按: 切换显示的测试值

长按"模式开关" 键后,测试值复位,返回第1次的测试指示画面。

KEW 2060BT

电流谐波失真率、含有率、有效值

电流量程根据测试值自动切换。

显示单位为"V"时,是"电压谐波"的测试画面。请长按中间的"显示项目切换开关 [▶]"键,将显示单位设定为"A" 后再进行测试。

「显示项目切换开关 [◀▶] 」

短按: 切换显示的测试值
 有效值・谐波失真率 THD-F、有效值・谐波失真率 THD-R、
 1 次基波有效值、含有率~30 次谐波有效值、含有率

「模式开关」

短按: 切换显示的测试值 瞬时值、最大值(MAX)、最小值(MIN)、平均值(AVG) **上述各值从按下时刻开始的测试值进行计算。

长按: 测试值复位(MAX、MIN、AVG)

例如)有效值・谐波失真率 THD-F^{*}的显示画面

*上段和下段显示的各测试值,在所有画面上可同时切换。

显示 MAX、MIN、AVG 的状态的量程是固定的。返回到瞬时值的显示时,切换为自动量程。

电压谐波失真率、含有率、有效值

显示单位为"A"时,是"电流谐波"的测试画面。请长按中间的"显示项目切换开关 [▶]"键,将显示单位设定为"V"后再进行测试。

长按

%

%

「显示项目切换开关[◀▶]」

短按: 切换显示的测试值 有效值•谐波失真率 THD-F、有效值•谐波失真率 THD-R、 基波有效值、含有率~30次谐波有效值、含有率 有效值•谐波失真率 THD-F 有效值•谐波失真率 THD-R 400 400 THDR 2574 V THD F 257.4 V [◀▶] % % [◀▶] 30次谐波有效值、含有率~ 基波有效值、含有率 ((

[◀▶]

上段是谐波次数显示(1h~30h)和各谐波有效值,每隔1秒切换一次显示。

「模式开关」

短按: 切换显示的测试值

瞬时值、最大值(MAX)、最小值(MIN)、平均值(AVG) **上述各值从按下时刻开始的测试值进行计算。

2200 v

长按: 测试值复位(MAX、MIN、AVG)

例如)有效值・谐波失真率 THD-F^{*}的显示画面

h-30

*上段和下段显示的各测试值,在所有画面上可同时切换。

谐波失真率 THD-R/THD-F

THD: 总谐波失真率的计算方法有 2 种,以基波为基准的总谐波失真率为 "THD-F",以全部有效值为基准的总谐波失真率为 "THD-R"。

THD-F [%] =
$$\frac{谐波有效值(2次~)}{基波有效值(1次)}$$
×100
THD-R [%] = $\frac{谐波有效值(2次~)}{基波有效值+谐波有效值}$ ×100

两者都是用于量化电压波形或电流波形的谐波等级的性能指标,但在 THD-R 中使用的运算公式中,若谐波较多(失真大),则相对的误差会变大。也就是说,如果测试环境的失真较小,则在测量误差上 THD-R/F 都相同,但如果失真较大,则与 THD-R 相比,则 THD-F 的运算公式误差更小。

在旧的测试仪器中,由于正确测试 THD-F 的运算公式中所需的仅基波(1次)的有效值是非常困难的,所以 THD-R 是性能指标的主流,但现在由于可以正确测试,所以 THD-R 用于简易测试,, 而一般更多使用对于测试准确度而言,受谐波成分影响小的 THD-F 的失真率。

在探测负载侧的谐波原因的现场多数使用 THD-R,而在进行电能质量管理的现场则主要使用 THD-F。

6.5 检相

注记

● 如异电容三相 4 线式(V 接线、△ 接线)那样,各相间电压不平衡接线时,无法正确判定相序。
 ● 若将 SETUP 功能内的 19 页 "蜂鸣 ON/OFF" 设定为 OFF,则不会发出判定后的蜂鸣音。如需检相判定的蜂鸣音提示时,请将"蜂鸣 ON/OFF"设置为 ON。

请将功能开关设置为 💟 。

根据三相3线式、三相4线式的被测接线的状态,如下表所示显示判定结果。 每个数字表示的是连接到的相序。

接代业本			判定结果		
按线扒芯	R(L1)	S(L2)	T(L3)	显示	蜂鸣
正相	,安中	通电	,玉中	1.2.3	断断续续: 哔、哔、哔
逆相	週甩	鸟 接地	週电	3.2.1	连续: 哔———
不能判定	缺相、频率异常、电压有效 输入范围外、不平衡		—.—.—	无	

7章 其他功能

「数据保持功能」

按下数据保持键后,LCD 左上方显示 H 标志,保持当前的显示。此状态中,测试仍在继续,但 不更新显示。另外,可以切换最大值、最小值、平均值、波高值等的显示,参照数据保持时的测试 值。再次按下数据保持键后, H 标志消失,重新开始更新显示。

另外,若切换了功能,则解除数据保持后,在切换后的功能中开始测试。

「自动熄灯」

在不进行任何操作的状态 5 分钟后,自动熄灭背光灯。如需再次点亮时,长按显示项目切换开关 [◀], 会再次点亮 5 分钟。另外,在点亮的状态中,长按显示项目切换开关 [◀]后,背光灯熄灭。 如果将 SETUP 功能内的 19 页「背光灯 ON / OFF」设置为 OFF,则即使 5 分钟无操作,也会持 续亮灯。如需从该状态中熄灭背光灯,请长按显示项目切换开关 [◀]。

「自动关机」

注记

在功能开关位于测试功能位置的状态下断电时,自动关机功能启动,处于自动断电的状态。

除了蓝牙通信的状态以外,在不进行任何操作的状态 15 分钟后,蜂鸣器将鸣叫 4 次(哔、哔、哔、 哔),自动关闭主机电源。如需再次接通电源时,请将功能开关暂时设置为 OFF 位置,然后移动到 测试功能的位置。

「电流自动量程」

根据测试中的电流有效值,自动切换电流范围。

切换,是在当前量程的有效值超过 110%或 PEAK 值超过 300%时提高量程,在当前量程中,低于下位量程的有效值 90%时降低量程。

但是,若在显示模式中选择了 MAX (最大值)、MIN (最小值)、AVG (平均值)、|PEAK| (峰值),则将固定在选择时的量程内。

KEW 2060BT

8章 使用 Bluetooth 蓝牙功能

▲ 警告

● 蓝牙通信中的无线电波可能会影响医疗电子设备的操作。在存在此类设备的区域中使用蓝牙连接时, 请务必特别小心。

注记

- 仪器或 Android 末端附近若有无线 LAN (IEEE802.11.b/g) 的机器时,可能会由于电波干扰而造成无法连接、从仪器传送到末端的数据速度变慢或者仪器 LCD 显示更新和 Android 末端的显示更新之间产生显著的时间差等情况。此时,请尽量将仪器和 Android 末端远离无线 LAN 机器、切断电源或使仪器和 Android 末端的距离尽可能地靠近。
- 仪器或 Android 末端的任何一个若放入金属盒中进行通信的话,可能无法连接。请更换测试场所或使 仪器和 Android 末端间没有金属板的阻隔。
- 蓝牙通信时若发生任何数据或信息泄漏,本公司概不负责。
- 即使使用的是专用程序的 Android 末端,不同机种也可能无法与仪器连接。若与其他 Android 末端连接后仍然无法接通时可能是存在故障,请与本公司或代理商连接。
- Bluetooth 蓝牙的字标和 logo 都属于 Bluetooth SIG, Inc.所有。KYORITSU 公司获得使用权。
- Android、Google Play Store 和 Google Map 是 Google 股份有限公司的商标或注册商标。
- iOS 是 Cisco 的商标或注册商标。
- Apple Store 是 Apple 股份有限公司的服务标志。
- 在本说明书中,省略了 TM 标记、[®]标记。

蓝牙通信功能,可以与 Android / iOS 平板电脑进行通信。在平板电脑上安装专用程序「KEW Power *(星号)」,即使在远离 KEW2060BT 的地方,也可以用手边的平板电脑确认判定结果。

如需使用本功能,需要将平板电脑连接到互联网,下载专用应用程序「KEW Power *」。另外,关于一部分功能,如果不是连接到互联网的状态就不能使用。详情请参考「8.1 专用程序「KEW Power *(星号)」」。

8.1 专用程序「KEW Power * (星号)」的功能

专用应用程序「KEW Power*(星号)」可在 Android 平板电脑上的 Google Play Store 或 iOS 平板电脑上的 App Store 中免费获取(需要上网)。请注意,需要自行承担用于下载应用程序和使用其特定功能的通信费用以及上网所需费用。并且,「KEW Power*」不通过记录媒体进行发布。

「KEW Power*」的代表性功能有以下几种:

- (1) 可以在平板电脑上显示测试结果
- (2) 测试结果的数据保存、显示功能
- (3) 电压和电流的输入波形显示功能
- (4) 谐波的有效值和含有率的图表显示功能
- (5) 测试值的好坏判定功能

9章 规格 9.1 安全规格

使用环境	:	室内使用	高度 2000m 以下
精确度保证温湿度范围	:	23℃±5℃	相对湿度 85%以下(无结露)
使用温湿度范围	:	-10°C~50°C	相対湿度 85%以下(无结露)
保存温湿度范围	:	-20° C~ 60° C	相対湿度 85%以下(无结露)
耐电压	: AC	7000V / 5 秒间	电流传感器和外装间或电气回路和外装间
绝缘电阻	: 501	MΩ以上/1000V	/ 电气回路和外装间
适用规格	:	IEC 61	010-1/-2-032(本体)/-031(测试线)
	测订	式种类 CAT IV 60	0V CAT III1000V 污染度 2、
	IEC	61326 (EMC) C	lass B、EN50581(RoHS)、
EN 301 489-1、EN 300 328、EN 62479			
防尘/防水性	: IEC	C 60529 IP40	

9.2 一般规格

显示更新周期	: 🏹 , 🏹 , W , 🕑 功能 约 0.5 秒 🛛 🛛 🏙 功能 约 1 秒
可被测导体	: Φ75mm 以下的圆形导体及 80×30mm 以下的柱状导体(母线)
外形尺寸	: 283 (L) x143 (W) x50 (D) mm
质量	:约590g(含电池)
附件	:测试线 MODEL7290(红,黑,黄各一根(鳄鱼夹)) 1组
	使用说明书 1 本
	单 3 形碱性干电池(LR6) 2 节
	软包 MODEL9198
连续使用时间	:约58小时
	(₩ 功能、连续、无负载、背光灯 OFF、单三形碱性干电池(LR6)×2 节)
消耗电流	: 35mA typ.(@3.0V、 W 功能)
外部通信	: Bluetooth [®] Ver5.0

9.3 测试规格	KEW 2060			
9.3 测试规格				
交流电流功能	Â			
交流电流有效	[值(ACA)〔Arms〕・峰值(绝对值) 〔A peak 〕			
量程 	 40.00A / 400.0A / 1000A * 仅限无固定量程的自动量程 超过当前量程的有效值 110%或 PEAK 值 300%时,提高量程。当前量程 中未满下位量程的有效值 90%的情况下,降低量程。但是,在显示模式中 选择了 MAX (最大值)、MIN (最小值)、AVG (平均值)、 PEAK (峰 值)的情况下,当前量程将固定。 			
显示位数	4位数			
采样期间	1 个周期 / 500ms			
米样频率	32.8kHz(30.5μs 间隔) PEAK 值: 仅频率测试值 40.0Hz~70.0Hz 间 9 点的移动平均			
有效输入范围	40.00A 量程有效值: 0.60A~40.00A、 PEAK 值: ±(0.6A~56.57A) 400.0A 量程有效值: 6.0A~400.0A、 PEAK 值: ±(6.0A~565.7A) 1000A 量程有效值: 6.0A~999 9A、 PEAK 值: ±(6.0A~1414A)			
显示范围	 有效值: 40.00A 量程 : 0.30~44.00A 400.0A 量程 : 3.0(36.0A*)~440.0A 400.0A 量程 : 30(360A*)~440.0A 1000A 量程 : 30(360A*)~1100A *自动量程中显示 "()"内的量程,不足 0.30A 为零,超过 1100A 时显示 OL PEAK 值(绝对值): 40.00A 量程 : 0.30A~120.00A 400.0A 量程 : 3.0A~1200.0A 1000A 量程 : 30A~1500A 			
峰值系数	40.00A / 400.0A 量程为 3 以下, 1000A 量程为 3 以下 1500Apeak			
精确度	有效值:正弦波的测试波形 40.0~70.0Hz: ±1.0%rdg±3dgt 70.1~1kHz: ±2.0%rdg±5dgt *除了 40~70Hz 的正弦波以外,精确度加上±0.5%rdg±5dgt PEAK 值(绝对值): 40.0~70.0Hz: ±2.5%rdg±5dgt 70.1~1kHz: ±4.0%rdg±5dgt			
运算公式	A= √ ((1 (() ⁿ⁻¹ (A _i) ²))) i : 采样点№ n: 1 个周期内的样本数			

<u>电流频率(Af)</u>〔Hz〕

显示位数	4位数
精确度	±0.3%rdg±3dgt
	(40.0Hz~999.9Hz、A 量程 2.5%~110%、正弦波)
显示范围	40.0~999.9Hz

交流电压功能 🏹

交流电压有效	<u> 牧值(ACV)〔Vrms〕・峰值(绝对值) 〔V peak 〕</u>
量程	1000V
显示位数	4 位数
采样期间	1 个周期 / 500ms
采样频率	32.8kHz(30.5µs 间隔)
	PEAK 值: 仅频率测试值 40.0Hz~70.0Hz 间 9 点的移动平均
有效输入范围	有效值: 30.0V~999.9V PEAK 值: ±(30.0V~1414V)
显示范围	有效值: 30.0V~1100V PEAK 值(绝对值): 30.0V~1555V
收压工业	木俩下限值亟示 LO, 超过上限值亟示 OL
峰值系致	
精确度	有效值:止弦波的测试波形 40.0~70.0Hz: ±0.7%rdg±3dgt
	70.1~1kHz: ±3.0%rdg±5dgt
	*除了 40~70Hz 的止弦波以外,精确度加上±0.5%rdg±5dgt
	PEAK 值(绝对值): 40.0~70.0Hz: ±2.5%rdg±5dgt
	70.1~1kHz: ±4.0%rdg±5dgt
输入阻抗	约 4MΩ *端子间的电阻值
运算公式	连接 L=V ₁ , N=V ₃ 进行测试
	i:采样点№
	│
	$V = \left[\left(\frac{1}{2} \left(\sum_{\alpha \neq \beta} \frac{1}{2} \right) \right) \right]$
	$ v - \overline{n} \sum (v_i)^2 $

<u>电压频率(Vf)</u>〔Hz〕

显示位数	4位数	
精确度	正弦波 40.0~999.9Hz、ACV 以及 ACA 的有效输入范围	
	±0.3%rdg±3dgt	
	(40.0Hz~999.9Hz、25V~1100V、正弦波)	
显示范围	40.0~999.9Hz	
	(在显示范围外或 ACV 以及 ACA 的显示范围外,显示"")	
信号源	V1-V3 (端子间的电压) 或 A	

<u>电力功能</u>₩ 电力功能₩

有效功率(P) (W)	
量程	40.00kW / 400.0 kW / 1000 kW *	安照电流量程切换
显示位数	4 位数 (精确度保证频率外显示'	·")
采样期间	1 个周期 / 500ms	
采样频率	32.8kHz(30.5µs 间隔)	
有效输入范围	电压有效值、电流有效值的有效输入	入范围且在 45~65Hz 的频率范围
显示范围	40.00 kW 量程 : 0.00~44.00	kW
	400.0kW 量程 : 0.0(36.0kW)	\sim 440.0kW
	1000kW 量程 : 0(360kW)~	1210kW
	*显示模式中选择 MAX (最大值)、	MIN(最小值)、AVG(平均值)的情况下,
	固定为当前量程。	
	*在自动量程中显示"()"内的量程	,在电压有效值、电流有效值的显示范围外
	以及有效输入频率外,显示""	
精确度	正弦波、功率因数 1 ±1.7%	6rdg±5dgt 相位角的影响±3.0°以内
	*Sum 值是各测试通道误差的合计的	的精确度, 3P3W 是 2 倍, 3P4W 是 3 倍
极性显示	消耗(流入):无符号、再生(流出):	—
运算公式	, / n-1 \	V 基准
	$ = \frac{1}{\sum_{i=1}^{n}} \sum_{i=1}^{n} \frac{1}{\sum_{i=1}^{n}} \frac{1}{\sum_{i=1}^$	Ⅰ: 米柱点№
	$ P - \overline{n} \left(\sum_{i \in A_i} (v_i A_i) \right)$	n: 1 个同别内的杆本剱
对象接线	显示值	连接对象
1P2W • 1P3W	P	1P2W: $L=V_1 \cdot A$, $N=V_3$
		1P3W: L1/L2= $V_1 \cdot A$, N= V_3
平衡 3P3W	$P_{sum}(=S_{sum} \times \cos(\theta))$	$R=V_1 \cdot A, S=V_3$
平衡 3P4W	P _{sum} (=Px3)	$R=V_1 \cdot A$, $N=V_3$
不平衡 3P3W	P_1 , P_2 , $P_{sum}(=P_1+P_2)$	P1: $R=V_1 \cdot A$, $S=V_2$, $T=V_3$
		P2: $R=V_1$, $S=V_2$, $T=V_3 \cdot A$
		~2 次变更连接对家进行测试(2 切率计法)
小半衡 3P4W	12(1) 14($P_1: K=V_1 \cdot A, N=V_3$
	'3 合计值・P(=P.+P.+P.)	$ \begin{array}{ccc} F2: & S=v_1^*A, & N=v_3 \\ P3: & T-V & A & N-V_2 \end{array} $
	ы т. ш. • sum • 1 • 2 • 3/	*3次变更连接对象进行测试

<u>视在功率(S)</u>〔VA〕

量程	与有效功率相同	
显示位数	与有效功率相同	
有效输入范围	与有效功率相同	
精确度	各测试值的运算 ±1dgt	
	*Sum 值是各测试通道误差的合	计的精确度、
	3P3W 是 ± 2dgt、3P4W 是 ± 3c	lgt
极性显示	无极性	
运算公式	S=VxA ^{**} P>S时P=S	
对象接线	显示值	连接对象
1P2W • 1P3W	S	与有效功率相同
平衡 3P3W	$S_{sum}(=S \times \sqrt{3})$	
平衡 3P4W	S _{sum} (=Sx3)	
不平衡 3P4W	$S_{sum}(=S_1+S_2+S_3)$	
	*Sn: 第n次测试的视在功率值	

无效功率(Q)〔Var〕

量程	与有效功率相同		
显示位数	与有效功率相同		
有效输入范围	与有效功率相同		
精确度	各测试值的运算±1dgt		
	*平衡 3P3W 测试时±2dgt、平衡	· 3P4W 测试时±3dgt	
极性显示	滞后:无符号、超前:一		
运算公式	$Q = \sqrt{S^2 - P^2}$		
	* P >S时Q=0		
	*极性符号通过电压电流相位差(θ)如下所示附加		
	0°~-90°~180°的范围:无符号 (+)滞后		
	0°~+90°~180°的范围:负号	ティング 一) 超前	
对象接线	显示值	连接对象	
1P2W-1P3W	Q	与有效功率相同	
平衡 3P3W	$Q_{sum}(=\sqrt{S_{sum}^2 - P_{sum}^2})$		
平衡 3P4W	Q _{sum} (=Q×3)		
不平衡 3P4W	$Q_{sum}(=Q_1+Q_2+Q_3)$		
	*Qn: 第 n 次测试的视在功率值		

功率因数(PF)

· · · · · · ·			
有效输入范围	与有效功率相同		
显示范围	-1.000~0.000~1.000		
精确度	各测试值的运算±1dgt		
	**平衡 3P3W 测试时±2dgt、平衡 3P4W 测试时±3dgt		
极性显示	滞后:无符号、超前:一		
运算公式	PF= P/ _S 但是,仅在平衡 3P3W, PF = cos (θ)		
	*三相回路测试时根据 sum 值计算。		
	[*] S=0时不显示。		
	*极性符号通过电压电流相位差(θ)如下所示附加		
	0°~-90°~180°的范围:无符号 (+) 滞后		
	0°~+90°~180°的范围: 负号 (一) 超前		
	*平均值以功率因数=1为基准,对超前、滞后的量进行平均化运算。		
	【运算例】		
	PF=0.99、-0.92、+0.96的3个测试值中,分别是		
	0.99 和 1 之差=-0.01 超前、		
	-0.92 和 1 之差=+0.08 滞后、		
	0.96 和 1 之差=-0.04 超前,		
	将各差分合计,则等于-0.01+0.08+(-0.04)=0.03滞后。		
	如果将其除以测试数的 3 次进行平均化,则 0.03÷3=0.01 滞后,求出的 PF		
	的平均值相对于 1 滞后 0.01,因此-0.99 超前成为 PF 的平均值。		

<u>电压电流相位差(θ)〔deg〕 (仅限于单相2线式测试时)</u>

显示范围	-180.0~0.0~+179.9 *有效功率的显示范围外,显示 ""	
极性显示	超前:无符号、滞后:一	
测试方式	比较电流波形相对于电压波形的过零位置来测试差 **S=0时不显示。 **极性符号显示以电压相位为基准(0°)的电流的相位角 无符号(+)超前、负号(-)滞后	

谐波功能 🎹	
测试方式	频率固定采样
	在 50/60Hz 各自输入 1 个周期间进行 256 次采样,实施 FFT 运算。采样频率
	根据标称频率设定值进行切换。
	50Hz 设定…12.8ksps(78µs 间隔),60Hz 设定…15.4ksps(65µs 间隔)
连接对象	L=V ₁ , N=V ₃ , L·R·S·T(夹至电力配线)=A
有效频率	50/60Hz
分析次数	1~30 次
窗口宽度	1 个周期
窗口类型	矩形
分析数据数	256 点
分析速率	1 次/500m 秒

谐波电压有效值(Vk: 1次基波~30次谐波)〔Vrms〕

量程、显示位数、	有效输入范围 与电压有效值相同
显示范围	与电压有效值相同 ※含有率 0.0%~100.0%相对于基波比例
精确度	有效值
	1~10 次 : ±5.0%rdg±10dgt
	11~20 次 : ±10%rdg±10dgt
	21~30 次 : ±20%rdg±10dgt
	含有率
	各测试值的运算±1dgt
运算公式	连接 L=V ₁ , N=V ₃ 进行测试
	► : 旧伙八奴
	$V_{k} = \sqrt{(V_{kr})^{2} + (V_{ki})^{2}}$ Vi . Let EFT when the work of the state o
	(()()() ())(1:电压TTT文沃油的函数成为
	※ _{今左変} _ Vk×100
	□ ^召 月 ← <mark>V1(基波)</mark>

谐波电流有效值(Ak: 1次基波~30次谐波)(Arms)

量程、显示位数、	有效输入范围 与电流有效	值相同
显示范围	与电流有效值相同※含有率0.	0%~100.0%相对于基波比例
精确度	有效值	
	1~10 次 : ±5.0%rdg±10	dgt
	11~20 次 : ±10%rdg±10d	lgt
	21~30 次: ±20%rdg±10d	lgt
	含有率	
	各测试值的运算±1dgt	
运算公式		k : 谐波次数
	·	Ar : 电流 FFT 变换后的实数成
	$Ak = \sqrt{(Akr)^2 + (Aki)^2}$	分
		Ai : 电流 FFT 变换后的虚数成
		分
	**含有率= <mark>Ak×100</mark> A1(基波)	

总谐波电压失真率(V THD-F) (%)

显示位数	4 位数
显示范围	0.0%~100.0%
精确度	各测试值的运算 ±1dgt
运算公式	VTHD-F = $rac{\sqrt{\sum_{k=2}^{30} (Vk)^2 \times 100}}{V1(基波)}$ V: 谐波电压 k: 谐波次数

总谐波电流失真率(A THD-F) (%)

显示位数	4 位数
显示范围	0.0%~100.0%
精确度	各测试值的运算±1dgt
运算公式	A THD-F = $\frac{\sqrt{\sum_{k=2}^{30} (Ak)^2 \times 100}}{A1(基波)}$ A: 谐波电流 k: 谐波次数

总谐波电压失真率(VTHD-R) 〔%〕

显示位数	4 位数	
显示范围	0.0%~100.0%	
精确度	各测试值的运算±1dgt	
运算公式	V THD-R= $\frac{\sqrt{\sum_{k=2}^{30} (Vk)^2 \times 100}}{\sqrt{\sum_{k=1}^{30} (Vk)^2}}$	V: 谐波电压 k: 谐波次数

<u>总谐波电流失真率(A THD-R) 〔%〕</u>		
显示位数	4 位数	
显示范围	0.0%~100.0%	
精确度	各测试值的运算±1dgt	
运算公式	A THD-R = $\frac{\sqrt{\sum_{k=2}^{30} (Ak)^2} \times 100}{\sqrt{\sum_{k=1}^{30} (Ak)^2}}$	A: 谐波电流 k: 谐波次数

相位检测功能 🔮

有效输入范围	测定波形 45~65Hz 的正弦波、电压有效值(ACV)80~1100V 各相电压间没有相位误差的状态下、
	电压振幅 MAX-MIN 之差在 10%以内
	相电压平衡状态下 相位误差3P4W (三相4线式) ±30°以内
	3P3W (三相 3 线式) ±15°以内
显示	(1.2.3) 蜂鸣音断断续续鸣叫: 哔、哔、 : 正相、全相通电
	哔、哔 : 逆相、全相通电
	(3.2.1) 蜂鸣音连续鸣叫:哔————————————————————————————————————
	() 无蜂鸣音 缺相、频率异常、电压有效输入
	范围外、不平衡等

克列茨国际贸易(上海)有限公司 邮箱: info@kew-ltd.com.cn